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Abstract

Spectro-fluorescence signature (SFS) of water samples contains information that may be used to
quantify dissolved organic carbon (DOC) if combined with multivariate analyses. A model was built
through SFS and partial least squared (PLS) regression. The SFSs of 219 samples of natural water
along the Raritan River and Millstone River watersheds located in central New Jersey, and their
corresponding DOC concentrations were used to build the model. Calibration, full cross-validation,
and prediction performances of various models were statistically compared before optimal model
selection. The final selected model, tested on the Passaic River watershed in northern New Jersey,
provided a bias of 0.028 mg/l and a root mean squared error of prediction (RMSEP) of 0.35 mg/l.
Linked to PLS, SFS can be a quality and cost effective method to perform on-line rapid DOC
measurements.
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1. Introduction

Natural organic matter (NOM) present in drinking water sources is a complex matrix of
organic materials. NOM has autochthonous and allochthonous origins, and is composed of
humic and non-humic materials. NOM can be evaluated through surrogate measurements
such as total organic carbon (TOC), dissolved organic carbon (DOC), and spectroscopic
methods. UV absorbance spectroscopy is a technique widely used to characterize the dis-
solved organic matter (DOM) in water. Yet, compared to fluorescence spectroscopy, it shows
lower selectivity and applicability to a wide range of organic character[1,2].

Spectrofluorescence occurs after excitation of organic materials’ fluorophores by a high-
energy light source that raises the energy levels of the electrons within the materials. As
in other spectrometric methods, Beer’s law describes the absorbed energy of any given
fluorophore as:

A = εpc (1)

whereA is the absorbance,ε the molar absorptivity,p the path length andc is the concen-
tration of the present fluorophores. However, the SFS of a DOM water sample, contains
more than one fluorophore, so Beer’s law is expanded to a form accounting for all the
fluorophores present in organic mixtures:

A = p
∑

εici (2)

whereεi andci are the molar absorptivity and the concentration of theith fluorophore present
in the water sample, respectively. While the energy level returns to ground, fluorescent light
is emitted. The quantum yield (Φ) of a given fluorophore is the ratio of the number of quanta
emitted as fluorescence by the total number of quanta absorbed. IfF is the fluorescence
intensity of a fluorophore at aλx–λm (excitation–emission) wavelength combination,F is
defined as:

F = ln(10) c Io(λi)pεΦ γ (λj ) (3)

where Io(λi) represents the intensity of the excitation light, andγ (λj ) the fraction ofF at
λj wavelength. For a specific combination ofγ x–λm, x(λi) andy(λj ), Roch[3] expresses
F as:

F = cx(λi)y(λj ) (4)

By defining the two vectors,x = x(λi), andy = y(λj ), F can be expressed in a matrix
form as:

F = cxyT (5)

For more than one fluorophore,

F =
∑

Fi =
∑

cixyT
i (6)

The SFS, also called emission–excitation matrix (EEM), is the total sum of emission
spectra of a sample at different excitation wavelengths, recorded as a matrix of fluorescent



T.F. Marhaba et al. / Journal of Hazardous Materials B97 (2003) 83–97 85

intensity in coordinates of excitation and emission wavelengths. SFS represents a significant
amount of data through a fingerprint of the sample of water. Therefore, multivariate analysis
can be used to find patterns, structures and correlations.

There are numerous publications using chemometrics in combination with UV-Vis spec-
trometry and near infrared (NIR) spectroscopy, but far less with nuclear magnetic reso-
nance (NMR), and spectrofluorescence. Combining UV and principal component regres-
sion (PCR), Egan et al.[4] measured carboxyhemoglobin in forensic blood samples. Dahlén
et al.[5], correlated nitrate and organic carbon in a PLS2 model with UV spectra to assess
ground water quality.

Haaland et al.[6] applied PLS and PCR to NIR spectral data. However, they raised
concern over the presence of interfering molecular species that have spectral variance in
the calibration data. Swierenga et al.[7] suggested a way to enhance the robustness of
NIR calibrated models by proceeding to a robust variable selection. Therefore, instead of
modeling the external variation, robust variable selection excludes external spectral variation
before modeling. Harmer et al.[8] used1H NMR spectroscopy and PLS to establish the
mathematical relationship between 14 fitted NMR parameters and the properties of a large
set of bituminous Australian coals.

SFS and PLS have been recently used by Baunsgaard et al.[9] to evaluate the quality
of solid sugar samples, by Goicoechea and Olivieri[10] to determine tetracycline in blood
serum, and by Persson and Wedborg[11] to predict the relative percentage of different water
masses present in surface water samples from the Baltic Sea or the Skagerrak deep water.

The use of SFS to characterize the DOC has been so far mainly based on a visual compar-
ison of contour and landscape plots. Marhaba et al.[12] used PCA to process and analyze
an entire spectral region applying a post-processing technique to identify specific character-
istics of the sub-fraction of DOM in water. The sub-fractions are the six different fractions
categorized by Leenheer[13] as hydrophobic acid, hydrophobic base, hydrophobic neutral,
hydrophilic acid, hydrophilic base, and hydrophilic neutral, isolated and fractionated using
resin adsorption chromatography. Marhaba et al.[14] identified regions within a SFS that
were characteristic of the six fractions. Furthermore, Marhaba and Pu[15] correlated the
SFS to the DOC of each fraction by multilinear regression (MLR). The post-processing
technique included intensity of fluorescence, slope and the area of each of the six major
peaks. However, when tested on a larger number of samples collected along different wa-
tersheds and periods, results were not conclusive and an increase of the bias was observed.
The origin of the bias can be explained by, first, the importance of the seasonal pattern that
was ignored since the calibration set contained samples from 1 month only (May 1998), and
secondly by a possible lack of accuracy and rigor in choosing the major peak representing
a given fraction. The risk that the selected combination of wavelengths, and not the entire
SFS, used to characterize each fraction does not reflect all relevant DOM fluorophores was
a concern.

Consequently, this paper exploits the entire SFS of natural water samples to build a model
for direct prediction of the DOC (mg/l) and to finally test it. Calibrations were done using
monthly samples from two watersheds in central New Jersey collected during a 1-year
period in order to capture the variation in the organic quality. Models were then tested on
samples of a third watershed in northern New Jersey. Models’ performances were compared
at the calibration, validation and prediction steps of the modeling process.
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2. Materials and methods

2.1. Samples collection and treatment

Water samples were collected between October 2000 and October 2001 in three ma-
jor watersheds serving central and northern New Jersey (Fig. 1), following a pre-defined
program (Table 1). The sampling collection totalized 377 samples from 41 locations.

Fig. 1. The sampling locations along the studied watersheds.
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Table 1
Data collection schedule on three New Jersey’s watershed

Watersheds

Passaic River (red (R)) Millstone River (green (G)) Raritan River (yellow (Y))

9/2000 0 6 9
10/2000 0 6 10
11/2000 0 6 10
12/2000 0 6 10
01/2001 22 6 9
02/2001 0 5 10
03/2001 12 6 10
04/2001 25 6 10
05/2001 10 4 10
06/2001 10 6 10
07/2001 25 6 10
08/2001 12 6 10
09/2001 12 6 10
10/2001 25 6 10

Total 153 81 138

Red, green and yellow are the different color codes.

Fig. 2shows a schematic of the methodology adopted. Sample collection, transfer of cus-
tody, transportation, and preservation were strictly in accordance with the project’s data
quality objectives. The samples were collected in lot certified quality-assured 250-ml am-
ber glass bottles, labeled with appropriate color and code, and transported the same day
to the New Jersey Applied Water Research Center at New Jersey Institute of Technology
(NJIT). Samples were stored in a dark cooler room at 4◦C. Prior to any analytical mea-
surements, the samples were filtered through nylon 0.45�m membranes (Advantec MFS
Inc., Pleasanton, CA) within 24 h after sample collection to remove suspended particles that
might interfere in both the SFS acquisition and the DOC analyses.

2.2. Analytical methods

The DOC analyses were performed using a Phoenix 9000 carbon analyzer using the
method of sodium persulfate oxidation (Standard Methods[16]).

The Hitachi F4500 fluorescence spectrophotometer (Tokyo, Japan) equipped with 150-W
ozone free Xenon lamp was used for the fluorescence measurements. The samples were
recorded in a 1-cm quartz cuvette of 4-ml volume sample size and excited from 225 to
399 nm wavelengths. They are 30 cases for each individual SFS; these cases correspond
to the emission frequencies that range from 249 to 633 nm with 6 nm sample spacing. The
scan speed was set at 30 000 nm/min and the slit (λx–λm) at 10/10 nm with a voltage of
700 V.

Finally, the working database was made of SFSs, which correspond to 1950 combina-
tions ofλx–λm for each sample. When exported to the Unscrambler software (Camo A/S,
Trondheim, Norway[17]) the matrix was transposed in order to have each sample defined as
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Fig. 2. Chart of the methodology adopted.

an object (row) and each of the 1950 wavelength combinationsλx–λm defined as a variable
(column). By adding the measured DOC, the final matrix used has the dimensions (372
samples× 1951), which represent 725,772 elements.

The Unscrambler software package version 7.6 (Camo ASA, Trondheim, Norway) was
used for all computing analyses.

2.3. Modeling, evaluation and interpretation

PCA belongs to the class of projection methods. This technique reduces the dimension-
ality of a large dataset of interrelated variables, while retaining as much as possible of the
variation present in the data. Geometrically, PCA finds directions in space along which
the distance between data points is the largest, which leads to the linear combinations of
the initial variables that contribute most to making the samples different from each other.
Mathematically, PCA is based on the decomposition of an original data matrixX in series
of linear terms and a residual matrix. In a matrix form we have,X = SP′, whereX is
the analyzed data matrix with the dimensions (i × j ), the productSP ′ is the new linear
combinations of the raw dataX, S the score matrix with dimensions [i × min(i, j)], and
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P ′ is the loading matrix with dimensions [j × min(i, j)]. There are a significant number
of principal components (PCs), designed byf , equal to the rank of theX matrix that is
relevant in describing the information inX. The final model built in PCA has the form
X = Sf P f + E, whereSf is the score matrix with dimensionsi × f , P f is the loading
matrix with dimensionsj × f , andE is the residual matrix withX dimensions.

PLS is a multivariate iterative projection method for modeling a relationship between
a dependent variable (Y ), and an independent variable (X). PLS models bothX andY

simultaneously to find the latent variables inX that will predict the latent variables inY
the best. PLS1 deals with only one response at a time, while PLS2 can handle several
responses (Y i) simultaneously. A PLS algorithm presents similarities with PCA. PLS uses
the variance in theY matrix to decompose the SFSs and calculate a model within the error
limits. PCA and PLS are widespread algorithms for calibration of spectrometer data values
and evaluation of unknown measurements spectra. However, the increasing number of data
due to techniques such as hyperspectral imaging or SFS, induced the attempt to develop
algorithms for faster PCA analysis and PLS regression[18,19]. In the classic algorithm used
in the Unscrambler software described in[20], all data are centered as for a full size model.
Both variables and samples weights are 1.0 all times. Literature on theory and applications
of PCA and PLS is abundant, and should be consulted for thorough explanations[21–23].

After calibration, the software quickly computes a full cross validation. In this iterative
process, the same samples are used for both model estimation and testing. One sample is
left out from the calibration dataset and the model calibrates on the remaining ones. Then,
the value for the left-out sample is predicted and the prediction residual is computed. The
process is repeated until every object has been left out and tested. The model was built,
calibrated and full-cross validated, using 219 samples from Raritan River and Millstone
River watersheds in Central New Jersey, while the prediction, the ultimate stage in mul-
tivariate analysis, was done using 153 samples of Passaic River watershed in North New
Jersey. None of the samples used at the prediction step are frozen. This precaution is set
to incorporate the external influence of environmental parameters such as local point and
non-point source of pollution, pH, and temperature, from a location to another as part of
the built model. Additionally, all the SFS tri-dimensional points (λx–λm–I) have the same
weight.

The statistical evaluation of the model relies on parameters such as slope, offset, bias, or
the average value of the difference between predicted and measured values, given as:

bias= 1

I

l∑
i=1

(ŷi − yi) (7)

whereI represent the number of calibration samples,ŷi the predicted response andyi the
measured DOC.

The uncertainty of future predictions was estimated with the root mean square error of
prediction (RMSEP).

RMSEP=

√√√√√ 1

Itot

Nseg∑
s=1

1

y weights2

Is∑
i=1

Fiys(i, j)2 (8)
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whereNsegrepresents the total number of segment at the cross-validation step. The variance
(Eq. (9)) in DOC that is explained by the model was given as:

rk1k2 =
∑

i∈sk
(xjki

− x̄ki
)(xjk2 − x̄k2)

(I − 1)Sx(k1)Sx(k2)
(9)

Fig. 3. Distribution of the raw data represent DOC values of Raritan River watershed and Millstone River watershed
with and without outliers. (a) All 219 samples: effects (x-axis) vs. normal distribution (y-axis); (b) HotellingT2

score plot of the 219 samples:T2 statistics vs. critical limit (α = 0.05 andF = 3) (c) Effects (x-axis) vs. normal
distribution (y-axis) for Yg-5 model.
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All the parameters and algorithms used herein are mathematically expressed in Camo ASA
[17].

3. Results and discussion

It is expected from all structured datasets to encounter unrepresentative data in the form of
outliers. Therefore, the first step taken herein was to closely look at the data in order to point

Table 2
The conditions of each model tested using Raritan River and Millstone River watersheds samples

Models

Yg-1 Yg-2 Yg-3 Yg-4 Yg-5 Yg-6 Yg-7 Yg-8 Yg-9

Calibration
set

218 218 217 212 194 193 193 191 191

PCs
calculated

6 6 6 6 6 6 6 6 6

PCs
suggested

6 6 6 6 6 4 6 4 6

Total
dataset

219 219 219 219 219 219 219 219 219

Samples
kept out

1 1 2 7 25 26 26 28 28

Kept out
samples list

5g0101 4Ag0801 4Ag0801 8g1200 4Ag1100 4Ag1100 4Ag1100 4Ag1100 4Ag1100

5g0101 5g0101 4Ag0900 4Ag0900 4Ag0900 4Ag0900 4Ag0900
4g0301 5g1000 5g1000 5g1000 5g1000 5g1000
5g0301 2g1200 2g1200 2g1200 2g1200 2g1200
4g0401 4g1200 4g1200 4g1200 4g1200 4g1200
5g0401 4Ag1200 4Ag1200 4Ag1200 4Ag1200 4Ag1200
4Ag0801 5g1200 5g1200 5g1200 5g1200 5g1200

6g1200 6g1200 6g1200 6g1200 6g1200
8g1200 8g1200 8g1200 8g1200 8g1200
9g1200 9g1200 9g1200 9g1200 9g1200
5g0101 5g0101 5g0101 5g0101 5g0101
3g0301 3g0301 3g0301 3g0301 3g0301
3g0401 3g0401 3g0401 5g0301 5g0301
4Ag0401 4Ag0401 4Ag0401 3g0401 3g0401
5g0701 5g0701 5g0701 4Ag0401 4Ag0401
4g0801 4g0801 4g0801 4Ag0501 4Ag0501
4g0901 4g0901 4g0901 5g0701 5g0701
1y1200 1y1200 1y1200 4g0801 4g0801
3y0301 3y0301 3y0301 4g0901 4g0901
4y0401 4y0401 4y0401 1y1200 1y1200
5y0401 5y0401 5y0401 3y0301 3y0301
6y0401 6y0401 6y0401 4y0401 4y0401
6y0501 1y0601 1y0601 5y0401 5y0401
4y1001 6y0501 6y0501 6y0401 6y0401
6y1001 4y1001 4y1001 1y0601 1y0601

6y1001 6y1001 6y0501 6y0501
4y1001 4y1001
6y1001 6y1001



92
T.F.M

arhaba
etal./JournalofH

azardous
M

aterials
B

97
(2003)

83–97



T.F. Marhaba et al. / Journal of Hazardous Materials B97 (2003) 83–97 93

Table 4
Results of the prediction DOC mg/l using the 138 samples from Passaic River watershed dataset

Yg-1 Yg-2 Yg-3 Yg-4 Yg-5 Yg-6 Yg-7 Yg-8 Yg-9

Slope 0.7621 0.7126 0.7415 0.9899 0.9777 0.8728 0.9777 0.9628 0.9621
Offset 0.5788 0.7498 0.6862 0.0171 0.1126 0.08967 0.0994 0.08967 0.0916
P2 0.6213 0.5713 0.6786 0.8965 0.948 0.9162 0.8949 0.9162 0.9164
RMSEP 1.0949 1.1735 0.9376 0.5181 0.349 0.4502 0.5169 0.4502 0.4493
SEP 1.0512 1.1289 0.8951 0.5194 0.349 0.4488 0.5183 0.4488 0.4478
Bias −0.3175 −0.333 −0.2879 −0.0207 0.0286 −0.0505 0.01562 −0.0505 −0.0508

those outliers. The normal probability plot inFig. 3(a)shows that the data could be normally
distributed without some outliers. Two samples at the upper right are clearly isolated thus
not correlated. Another group of samples affecting the distribution is located at the bottom
left part of the graph. Another way to point out non-correlated data is the plot of score
vector 1 versus score vector 2 of a PLS applied on all 219 SFSs as presented inFig. 3(b).
This plot confirms the presence of a large group of outliers and the hotellingT2 ellipse
(F = 3.00) shows it clearly. Taking a closer look at the identity of the outliers revealed
differences between the two watersheds. Spatially the samples are mainly from Millstone
River watershed, and show a higher DOC than the average value of 2.1 mg/l. Sampling
location 4Ag, the effluent of a sewage treatment plant (STP), has a strong influence on
station 5 g which appears to carry the gradient of DOC released in 4Ag. Thus, sampling
station 5 g is frequently ousted throughout the sampling season: October and December

Fig. 4. Evolution of the residual variance with the number of principle components extracted for Yg-5 model.
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2000, January, March and July 2001. Temporally, only 4 samples out of 28 are from the
dry period of the year—June to September—the majority are related to high level runoff
associated with either precipitations or deicing which affect the DOC measurements through
higher chloride concentrations. In conclusion, it is important to mention that this first step
allowed the isolation of the outliers.

Once the outliers were known, the second step consisted in building different models in
which one, two and more outlier samples were removed from the calibration set. This step
might concern dozens of scenarios, so it is important to keep track of the sample identity
removed as shown inTable 2. Generally, the dataset stays unchanged while part of the
spectra that is not related to the measured response is removed. It is the opposite herein
as the spectra are unchanged but outliers are progressively removed. Another important
difference is the size of the dataset of calibration-validation. Swierenga et al.[7] suggested
a technique based on variable selection in order to enhance the robustness of a calibration
model using NIR spectra. This technique uses only a subset of spectral values insensitive
to the independent variable instead of using the whole spectra.

For each of the nine models it is still important to verify that the distribution of the data
is normal as showed inFig. 3(c) for model Yg-5.Table 3presents 9 models out the 17
did that showed a variabilityR2 > 0.90. Since both samples and variables have the same
weight, the choice of the best model relies on the comparison of the correlation coefficient
R2, Q2 (R for the calibration,Q for the validation, andP for the prediction), the root mean
squared error of calibration RMSEC, the root mean squared error of prediction RMSEP
and the bias. The choice is obviously a compromise between the number of samples kept

Fig. 5. Measured (DOCm) vs. predicted (DOCp) DOC in mg/l by full cross-validation of Yg-5 model on Millstone
River and Raritan River watersheds dataset.
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Fig. 6. Prediction of DOC in Mg/l on Passaic River watershed samples. (A) Predicted DOC vs. measured DOC
in (mg/l) on Passaic River Watershed using model Yg-5; (B) evolution of the standard error of prediction along
Passaic watershed dataset.
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out, the goodness of the correlation on the calibration dataset and the fitness and accuracy
of the prediction on the validation dataset. This strategy allows minimization of the number
of samples to remove from the calibration set while attempting to obtain an image as real
as possible of the studied watersheds.

From Table 4, it appears that keeping more samples out or extracting less principal
components than suggested, would decrease the goodness of the correlation. Furthermore,
minimizing the number of outliers would have an impact on the standard errors of calibration
and validation as well as the bias, which has to be the lowest possible.

The models Yg-4 (7 samples out), Yg-5 (25 samples out) and Yg-6 (26 samples out) seem
to offer a good compromise especially at the validation withQ2 ranging between 0.9281
and 0.9289, bias between−0.0015 and 3.74 × 10−9, and RMSEP between 0.2962 and
0.2962, and SEP ranging between 0.297 and 0.3444. InFig. 4the evolution of the residual
variance for Model Yg-5, is effective between PC1 and PC4 and tends to be constant
from PC4 to PC6. Therefore, and as shown inTable 2, two models (Yg-6 and 8) with less
PCs than suggested were tested. It was expected to have a range scale “minima–maxima”
style at the final prediction level on Passaic River watershed samples with models Yg-4, 5,
and 6.

The testing on the Passaic River watershed samples confirmed that Yg-5 (Fig. 5) provides
the best statistics, goodness and fit, while compared to all the models tested as seen inTable 4;
a highP2, a lowest SEP, an intermediate RMSEP, and a bias of 0.0286. The comparison
between measured and predicted values of DOC concentrations showed that 31.6, 48.1, and
20% of the predicted values fell within±3, ±7, and±12% of the measured DOC values,
respectively.

Once the model is built and tested, one must look at the origin of the bias to point
out sampling locations that behave differently. Both the plots of the predicted versus the
measured DOC inFig. 6(A) and of the residual variance inFig. 6(B) for Yg-5 are used
to this end. The sampling station 321B on Upper Whippany River is frequently out of
the range, and to a certain extent sampling stations 104b on Singac Brook, 180 on Dead
River as well. The origin of the bias (2.8%) probably is due to the composition of the
DOM in these locations, and the high concentration of chloride ions that may interfere with
measured results used to calibrate the model. A meant-test comparison of the measured and
predicted DOC, to determine whether the averages of the two sets are significantly different
given a 95% confidence interval, confirmed the probability of this result, assuming the
null hypothesis, is 0.32 (tref = 0.985 and a standard deviation of 1.10). Another important
parameter to estimate the performance of Yg-5 model was accuracy, which revealed a value
of 2%. This result is certainly due to the large amount of sample collected from diversified
sources.

4. Conclusion

• This paper presented two of the multivariate regression problems generally encountered,
outliers and evaluation of data due to complex datasets. Furthermore, the use of PLS
circumvented the selection of emission/excitation wavelengths, making SFS a reliable
tool for determining DOC.



T.F. Marhaba et al. / Journal of Hazardous Materials B97 (2003) 83–97 97

• SFS correlated the DOC of surface water using PLS. Prediction of DOC showed a bias
(0.286 mg/l), which is lower than the standard deviation of the DOC measurements
(1.027 mg/l).

• The SFS-PLS correlation methodology can be adapted to other parameters linked to the
organic content in water such as DBPs, chlorophyll-a, and chlorine demand, which may
be of high interest to water purveyors.

• SFS-PLS is time (<2 min per sample) and cost effective.
• The methodology based on a realistic compromise between the number of samples kept

out of the calibration set, and the statistical performances obtained for different models,
guaranteed no loss of reliable spectral information while optimizing the model’s goodness
and fitness.
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